Preconditioning and Uniform Convergence for Convection-Diffusion Problems Discretized on Shishkin-Type Meshes

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Uniform Convergence of a Coupled Method for Convection-diffusion Problems in 2-d Shishkin Mesh

In this paper, we introduce a coupled approach of local discontinuous Galerkin (LDG) and continuous finite element method (CFEM) for solving singularly perturbed convection-diffusion problems. When the coupled continuous-discontinuous linear FEM is used under the Shishkin mesh, a uniform convergence rate O(N−1 ln N) in an associated norm is established, where N is the number of elements. Numeri...

متن کامل

Convergence of the Multiplicative Schwarz Method for Singularly Perturbed Convection-diffusion Problems Discretized on a Shishkin Mesh∗

We analyze the convergence of the multiplicative Schwarz method applied to nonsymmetric linear algebraic systems obtained from discretizations of one-dimensional singularly perturbed convection-diffusion equations by upwind and central finite differences on a Shishkin mesh. Using the algebraic structure of the Schwarz iteration matrices we derive bounds on the infinity norm of the error that ar...

متن کامل

Local projection stabilisation for higher order discretisations of convection-diffusion problems on Shishkin meshes

We consider a singularly perturbed convection-diffusion equation on the unit square where the solution of the problem exhibits exponential boundary layers. In order to stabilise the discretisation, two techniques are combined: Shishkin meshes are used and the local projection method is applied. For arbitrary r ≥ 2, the standard Qr-element is enriched by just 6 additional functions leading to an...

متن کامل

Finite element superconvergence on Shishkin mesh for 2-D convection-diffusion problems

In this work, the bilinear finite element method on a Shishkin mesh for convection-diffusion problems is analyzed in the two-dimensional setting. A superconvergence rate O(N−2 ln N + N−1.5 lnN) in a discrete -weighted energy norm is established under certain regularity assumptions. This convergence rate is uniformly valid with respect to the singular perturbation parameter . Numerical tests ind...

متن کامل

On statistical type convergence in uniform spaces

The concept of ${mathscr{F}}_{st}$-fundamentality is introduced in uniform spaces, generated by some filter ${mathscr{F}}$. Its equivalence to the concept of ${mathscr{F}}$-convergence in uniform spaces is proved. This convergence generalizes many kinds of convergence, including the well-known statistical convergence.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Advances in Numerical Analysis

سال: 2016

ISSN: 1687-9562,1687-9570

DOI: 10.1155/2016/2161279